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What can Al do?

« Draw conclusions, e.g. perform logical reasoning.

Classify, e.g. recognize an object.
- Predict, e.g. anticipate future events.

» Create, e.g. create images from a text.

« Act, e.g. control a robot.
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Al and Technology

Tools that can act on their own (autonomy)
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Al and Technology

* Al is meta-technology
* How to describe/realize technology that on its own can create (or help us create) new technology
* How to describe/realize problem-solving through computers
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Why Al?

« Automated Problem Solving
« Enhanced Capabilities
« Augmented Intelligence

»a

Artificial Intelligence I

/
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The Al Toolbox

Approaches to automated problem solving

Simplex, Gurobi A*, BestFirst Random ML, RL, Algorithmic  MCTS, DL+A*
® Assumes ®» Assumes ®» Assumes - Assgmes ®» Assumes
smoothness effective calibrated sufficiently good effective
in the search heuristics probability Epprom.manon. integration of
T or ML: assumes )
space distributions representative different
& efficient training data, techniques
sampling sufficient
schema capacity and
sufficient

training time.
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The Al Toolbox

Approaches to automated problem solving

Solver Learner
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The Big Picture| Applied Al

Algorithms, solvers and learners

g v Solver Problem Description »
* Capable of solving » Answer
different types of problems Question »

* Optimal in some sense
* The answer is guaranteed to be the solution to the problem

Knowledge-based

Trlz)lin;ng d::lta crez:ted Le a r n e r . .
> domin cpe S Training data
* The problem is given indirectly through data Learner » Answer
* Characteristics depend on the chosen technique Question »

* Sometimes gives incorrect answers.

Learning-based

Algorithm
* Solves a specific problem Question » Algorithm » Answer

Algorithmic
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Examples: Motion-planning (Safe, Adaptive, Trustworthy)

1. Safe Motion Planning

2. Safe Motion Execution Galll ‘\\.

3. Safety-Aware Introspection

(Anomaly Detection)
n!i!!

Perception &
Anticipation

N

* Probabilistic Reasoning N - _
. . over '.- r 1
* |s the robot inside the no-go-zone? Uncertainty ’!y ’r ’?’

Pr(colllslon) 0.1 Pr(collision) = 0.4

Decision Making
& Control

Introspective
Reasoning

* Anticipatory |

* Will the robot be colliding in the near future?  Reasoning
over

o y 4
Predictions % %
Pr(collision now) = 0.0 Pr(collision soon) = 0.5 1 e
SN - ¥
\ .

* Introspective . : Estimated state (now) T . . .
+ Isthe prediction similar to the realization? " about ° R Probabilistic Logic: For what we can write down
predietors Robust ML: For what we can’t express with words
(whonproding) = : : , , , :
LINKoplNGS [6] Tiger, M., and Heintz, F. Incremental reasoning in probabilistic signal temporal logic. International Journal of Approximate Reasoning, 2020.
Ilo“ UNIVERSITET 8 gmp gna’ temporal log PP g Learner

[7] Tiger, M., Bergstrom, D., Norrstig, A., & Heintz, F. Enhancing lattice-based motion planning with introspective learning and reasoning. |EEE RA-L, 2021.
[8] Wiman, E., Tiger, M. Safe lattice motion planning for motion planning with dynamic obstacles. IROS 2025.




Examples: Autonomous 3D-exploration planning

4. 3D exploration methods for systems to perform
effective 3D exploration tasks in uncertain,
dynamic, and potentially crowded
environments.
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Examples: Multi-agent Exploration | Path Planning | Order Picking m

[Work with Amath Sow, Emil Wiman, David Bergstrom]

5. Multi-agent Exploration (IR0s25)

6. Multi-agent Path Planning (AAMAS26?)

7. On-demand Multi-agent Order Picking

(ICRA23)

b‘%3 0.5 6 T.S %
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Examples: Multi-agent Coordination | Situation Awareness | U-Space

8. DyMuDRoP (Dynamic Multi-Drone Route Planning) Solver
Heuristic
9. SymbiCloud \ Near- optlmal coII|5|on free paths for 800 drones: 1 sec to plan

(Distributed world model AT G pATS Wy el TR Y M4 D
& situation awareness) g = = ol | FRPEN >, T

10. Delegation )
(Distributed self-organizing i
autonomous organization)

Delegation

300

Sliding Mixed-Initiative ~§ °
Autonomy Interaction

¥ g i o | v , | g e iy | | 3
o 1 A J ] | i 1 Y s ! SEOLMEE (Gt = \ 1 A ;
8 s 5B J & al V4 Uinkopinaskt® i 7 P

[Work with Amath Sow]

II.“ H“ K/OEI?JQIF?EST [a] Doherty, Patrick, et al. "Hastily formed knowledge networks and distributed situation awareness for collaborative robotics." Autonomous Intelligent Systems 1.1 (2021): 16.
[b] Doherty, Patrick, Fredrik Heintz, and Jonas Kvarnstrom. "High-level mission specification and planning for collaborative unmanned aircraft systems using delegation." Unmanned Systems 1.01 (2013): 75-119.



The Big Picture| Applied Al

Algorithms, solvers and learners
Solver Problem Description »

» Capable of solving

different types of problems Question »
* Optimal in some sense

* The answer is guaranteed to be the solution to the problem

Training data created Le a r n e r

by domain expert

- * The problem is given indirectly through data Training data »

Learner

e Characteristics depend on the chosen technique

* Sometimes gives incorrect answers.

Lesring based Question »

Algorithm
* Solves a specific problem Question » Algorithm » Answer

Heuristic

Algorithmic
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Applied Al | ML (Machine Learning)

* ML in practice (image, audio, text, ...):

Deployment

Development
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Applied Al | Hybrid Al (offline learning)

* Hybrid Al g
» Combining systematic and approximate Al FUIERETT T -
(Knowledge-based and artifacts from Learning-based)

r—r— - ——
S 51,000,000 88 &8 $200,000 b

Deployment

Problem Description
Development

Solver Learner

Training Data »

g e )

“Thinking” + tools
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Systematic Al (illustration)

Tic-Tac-Toe |
| MAX (X)
Heuristic search:
Use a heuristic to MIN(©)
decide on the order in
which to try different | “**%
actions
MIN (o)
Heuristic: !
How likley is a win if
picking action @?  |TERMINAL

Utility

X X
X X
I X X X
Xo[ | X Jo] [X
0 e =~ 9! = 362,880 terminal nodes
S e 5,478 distinct states
Xo[x| [X[o[ ] [Xo
X X l
\\\\ \
x[olx] [X[o[x] [Xo I
o[ [oloX [[X 5
o[ | [xxjo] X0
-1 0 +1



Applied Al | Hybrid Al (offline learning)

* Hybrid Al

» Combining systematic and approximate Al
(Knowledge-based and artifacts from Learning-based) 'I

Deployment

Development

¥

1 $300,000 B 5 51,000,000 B & $200,000 b

] | v2ors
Y%= [1( \

Solver

Heuristik

Problem Description

Solver Learner

Heuristic serach:
Use a heuristic to
decide on the order in |
which to try different

Training Data »

g e )
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Applied Al | Hybrid Al (online learning)

* Hybrid Al

» Combining systematic and approximate Al
(Knowledge-based and Learning-based)

Solver

Deployment Problem Description mp

Learner

e

Training Data »

LINKOPINGS
II.“ UNIVERSITET



Applied Al | Hybrid Al (online learning)

e Hybrid Al

» Combining systematic and approximate Al
(Knowledge-based and Learning-based)

Deployment

Solver
Model
Predictive

Learner Control

Solver
Problem Description mip

Training Data »

Learner
Bayesian
State
Estimation




ML | Categorization of Approaches

Probabilistic ML (Bayesian Learning, Grounded ML, Casual ML)

 Examples: Graphical models, Gaussian processes, BNNs*, ...

e SOTA: Automatic decision making, safety-critical systems, building understanding (automated research)

Deep Neural Networks
 Examples: FNN, CNN, RNN, GNN, ResNET, Transformer, ...

* SOTA: Image, Video, Sound, Text, ... (unstructured, high-dimensional)

Gradient Boosting Decision Trees
* Examples: XGBOOST, CatBoost, Light GBM
* SOTA: Tabular data (structured data)
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Example: Probabilistic ML (Gaussian Splatting)

drone video

LINKOPINGS : L , :
II.“ UNVErsier  Gaussian Splatting — Real-time rendering



ML | Categorization of Approaches

Probabilistic ML (Bayesian Learning, Grounded ML, Casual ML)

* Gold standard
* The full learning problem with uncertainty can be stated (then often approximated for efficiency...).
* Integrate domain knowledge (i.e. from physics) directly into the ML models
* Online learning, Sample-efficient learning, *understanding™®, Guarantees, ...

Deep Neural Networks
* Examples: FNN, CNN, RNN, GNN, ResNET, Transformer, ...

e SOTA: Image, Video, Sound, Text, ... (unstructured, high-dimensional)

Gradient Boosting Decision Trees
* Examples: XGBOOST, CatBoost, Light GBM o s etszn ‘
* SOTA: Tabular data (structured data)
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What is needed for effective ML in the wild

« We need Probabilistic ML — But it does not scale

« DL (etc.) scale — But it has none* of the necessary properties

» We need to effectively combine both

Deep Neural Networks
* Examples: FNN, CNN, RNN, GNN, ResNET, Transformer, ...
* SOTA: Image, Video, Sound, Text, ... (unstructured, high-dimensional)

"

* Gold standard
» Trust, transparency, reliability, explicit uncertainty/probabilities, guarantees...

* Induction bias is explicit, prediction uncertainty well founded, model is explainable.
» Explicit separation (and estimation) of Epistemic and Aleatoric uncertainty.
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Bridging academia and industry

Industry (and society)

* Makes Al concrete through usability and societal impact

* Possesses resources and expertise in production and deployment

* Has access to socio-strategic, industry-tactical, and immediate perspectives and needs

Academia (basic research in Al)

» Offers a vast toolkit of general-purpose methods adaptable to many specific applications

* Provides knowledge on enabling technologies for the next (next-next) gen. of tech (2-10 years ahead)
e Contributes strategic and long-term perspectives on capabilities and impact

Current dynamics

» Al research now traverses Technology Readiness Levels (TRLs) at unprecedented speed:
what once took 5-10 years can now happen within 3-12 months. IN

Solver

> With sufficient resources, we can build a demo of almost anything today. Heuristic

» Building something reliable, however, remains far more challenging. It requires safety and adaptivity by design.
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Al projects

Al projects vs other kinds of projects?
* Competence?

* Uncertainty?

* Resources?

* Input?

Verification and Validation?

e Users?

Legal?
Ethics?
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Mattias Tiger

Al och Integrerade Datorsystem (AlICS),
Institutionen for Datavetenskap

www.ida.liu.se/~”matti23/mattisite/research/

www.liu.se/ai-academy

www.liu.se/medarbetare/matti23

Integrating Learning, Optimisation and Reasoning

v @ TAILOR IAWVAV/ AN =)o
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http://www.ida.liu.se/%7Ematti23/mattisite/research/
https://liu.se/ai-academy
https://liu.se/ai-academy
https://liu.se/ai-academy
https://liu.se/medarbetare/matti23
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