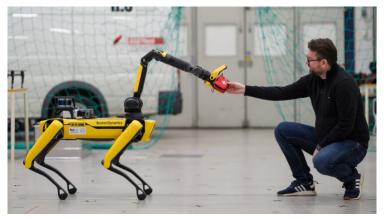
TDDE19 Advanced Project Course - Al and Machine Learning

Al Projects (technical perspective)

Mattias Tiger (PhD, AI Researcher)
Al and Integrated Computer Systems (AIICS),
Department of Computer Science
mattias.tiger@liu.se

What can AI do?

- Draw conclusions, e.g. perform logical reasoning.
- Classify, e.g. recognize an object.
- **Predict**, e.g. anticipate future events.
- Create, e.g. create images from a text.
- Act, e.g. control a robot.



Al and Technology

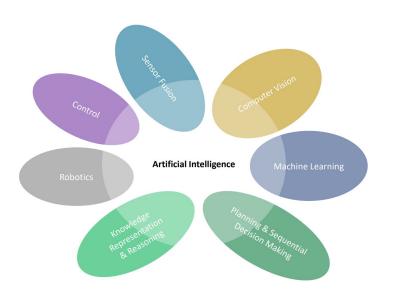
Tools that can act on their own (autonomy)

Al and Technology

- Al is meta-technology
 - How to describe/realize technology that on its own can create (or help us create) new technology
 - How to describe/realize problem-solving through computers

Why AI?

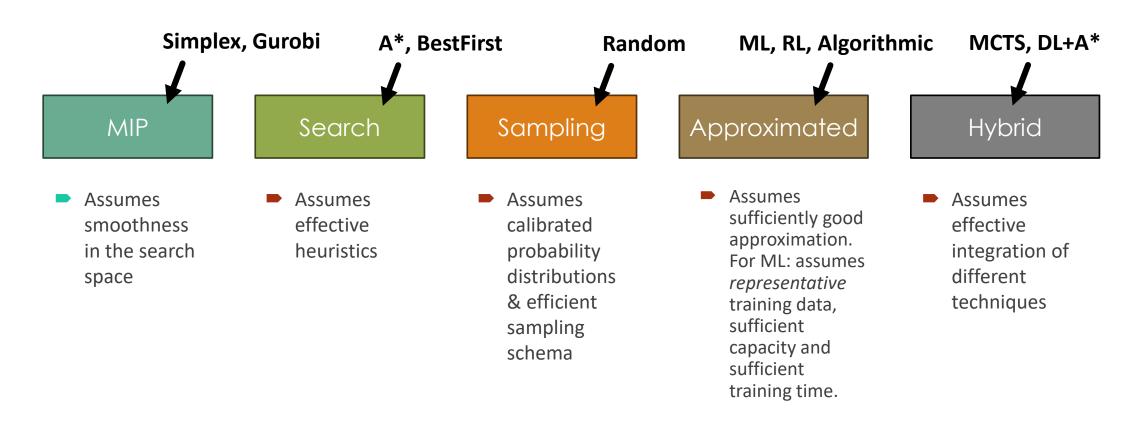
- Automated Problem Solving
- Enhanced Capabilities
- Augmented Intelligence



Bring clarity and control to an increasingly complex and uncertain world

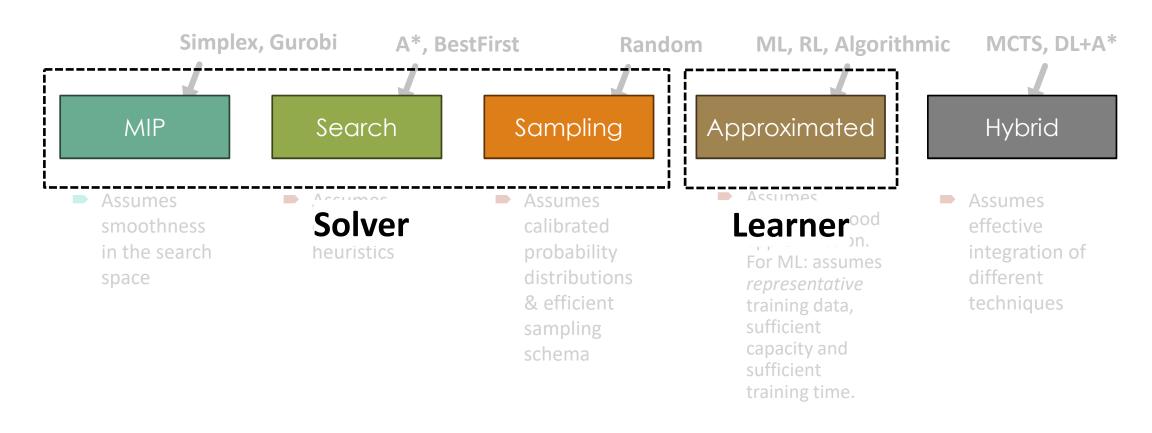
The AI Toolbox

Approaches to automated problem solving



The AI Toolbox

Approaches to automated problem solving



The Big Picture | Applied Al

Algorithms, solvers and learners

Solver

- Capable of solving different types of problems
- Optimal in some sense
- The answer is guaranteed to be the solution to the problem

Problem Description

Question

Learner

- The problem is given indirectly through data
- Characteristics depend on the chosen technique
- Sometimes gives incorrect answers.

Solver

Answer

Algorithmic

Algorithm

• Solves a specific problem

The Big Picture | Applied Al

Algorithms, solvers and learners

Solver

- Capable of solving different types of problems
- Optimal in some sense
- The answer is **guaranteed** to be the solution to the problem

Problem Description

Question

Learner

- The problem is given indirectly through data
- Characteristics depend on the chosen technique
- Sometimes gives incorrect answers.

Solver

Answer

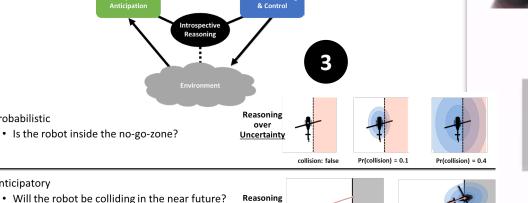
Algorithmic

Algorithm

Solves a specific problem

Examples: Motion-planning (Safe, Adaptive, Trustworthy)

- Safe Motion Planning
- Safe Motion Execution
- Safety-Aware Introspection (Anomaly Detection)



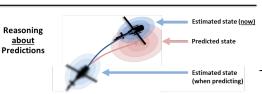
Predictions

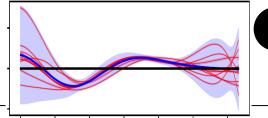
Introspective

Probabilistic

Anticipatory

• Is the prediction similar to the realization?



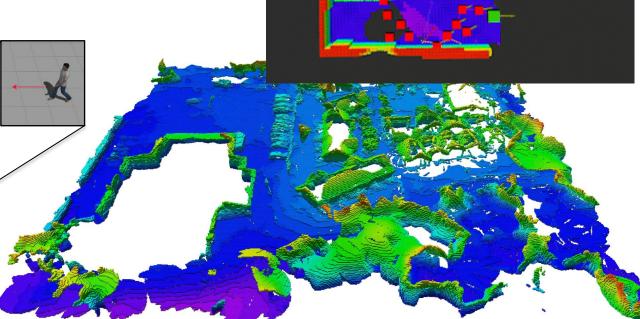


Probabilistic Logic: For what we can write down **Robust ML:** For what we can't express with words

- [6] Tiger, M., and Heintz, F. Incremental reasoning in probabilistic signal temporal logic. International Journal of Approximate Reasoning, 2020.
- [7] Tiger, M., Bergström, D., Norrstig, A., & Heintz, F. Enhancing lattice-based motion planning with introspective learning and reasoning. IEEE RA-L, 2021.
- [8] Wiman, E., Tiger, M. Safe lattice motion planning for motion planning with dynamic obstacles. IROS 2025.

Examples: Autonomous 3D-exploration planning

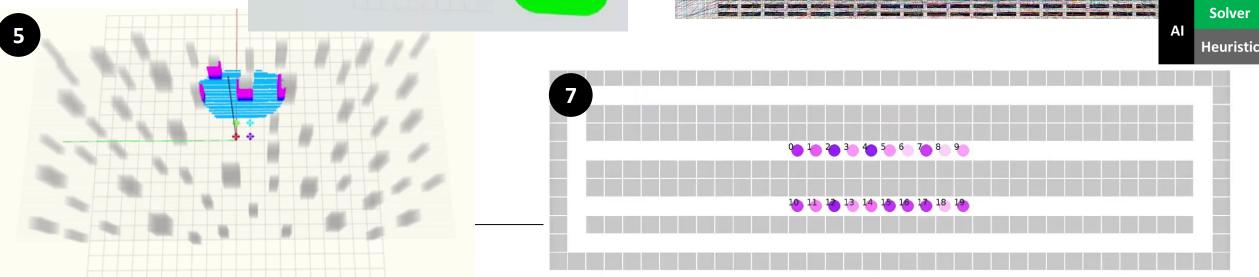
4. 3D exploration methods for systems to perform effective 3D exploration tasks in uncertain, dynamic, and potentially crowded environments.



- 5. Multi-agent Exploration (IROS25)
- 6. Multi-agent Path Planning (AAMAS26?)

7. On-demand Multi-agent Order Picking (ICRA23)

[Work with Amath Sow, Emil Wiman, David Bergström]

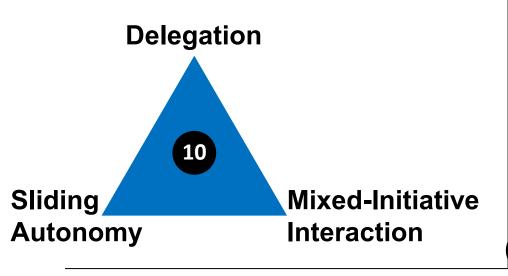


Examples: Multi-agent Coordination | Situation Awareness | U-Space

Solver

8. DyMuDRoP (Dynamic Multi-Drone Route Planning)

- SymbiCloud [a]
 (Distributed world model & situation awareness)
- 10. Delegation [b]
 (Distributed self-organizing autonomous organization)



Near-optimal collision-free paths for 800 drones: 1 sec to plan

The Big Picture | Applied Al

Algorithms, solvers and learners

Solver

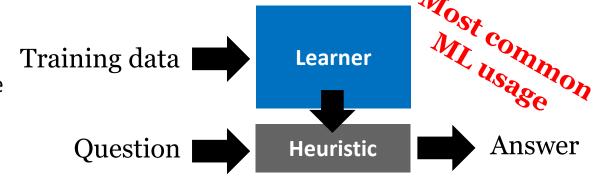
- Capable of solving different types of problems
- Optimal in some sense
- The answer is guaranteed to be the solution to the problem

Problem Description

Question

Learner

- The problem is given indirectly through data
- Characteristics depend on the chosen technique
- Sometimes gives incorrect answers.



Solver

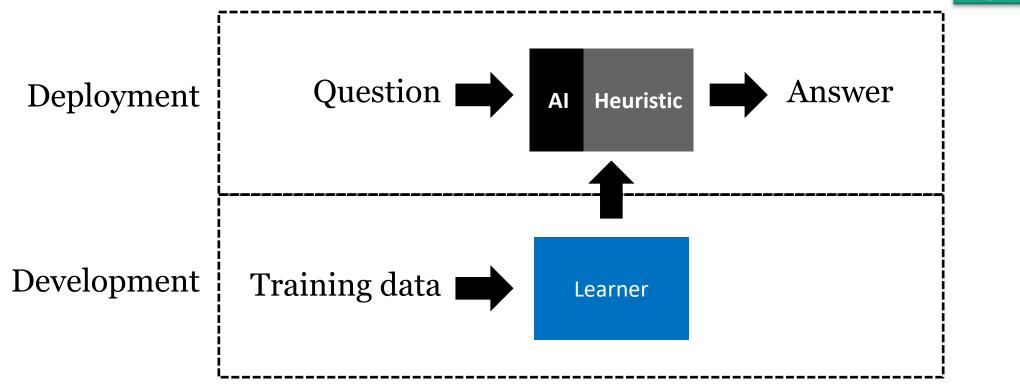
Answer

Algorithm

• Solves a specific problem

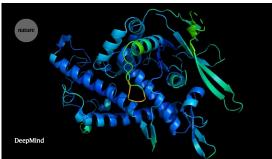
Applied AI | ML (Machine Learning)

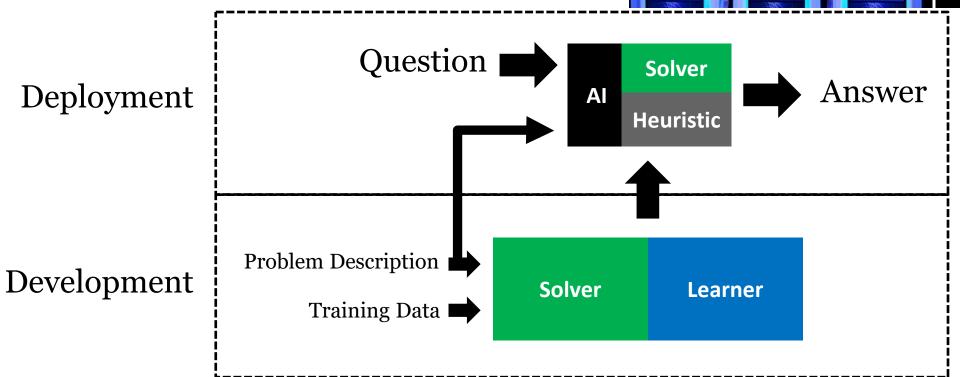
• ML in practice (image, audio, text, ...):



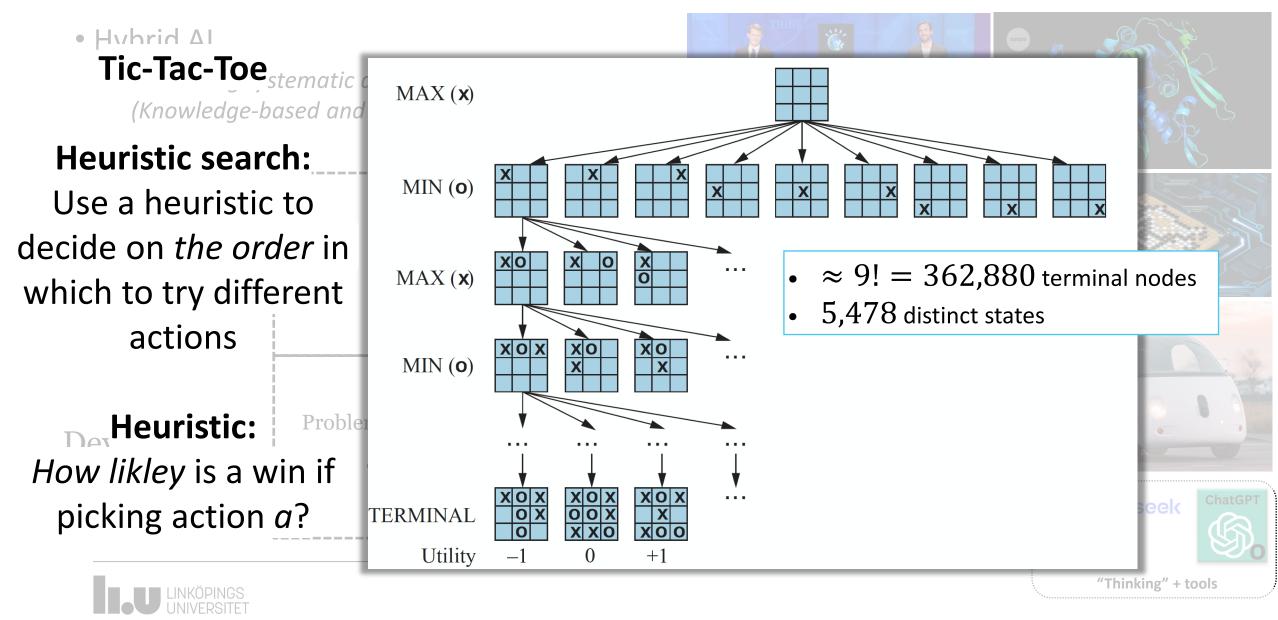
Applied AI | Hybrid AI (offline learning)

- Hybrid Al
 - Combining systematic and approximate AI
 (Knowledge-based and artifacts from Learning-based)



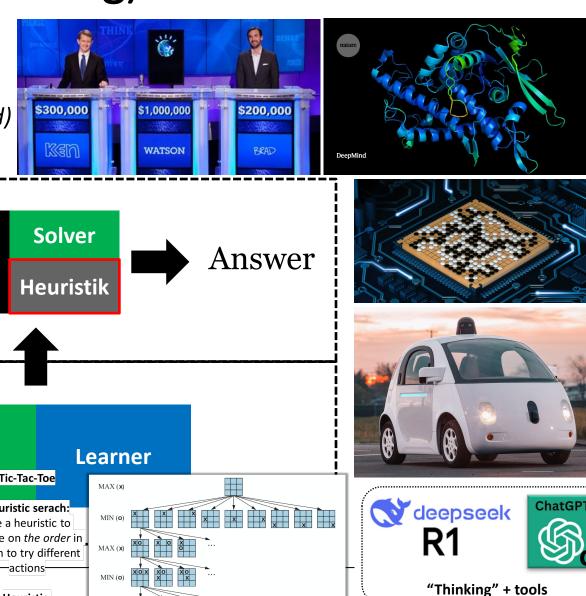


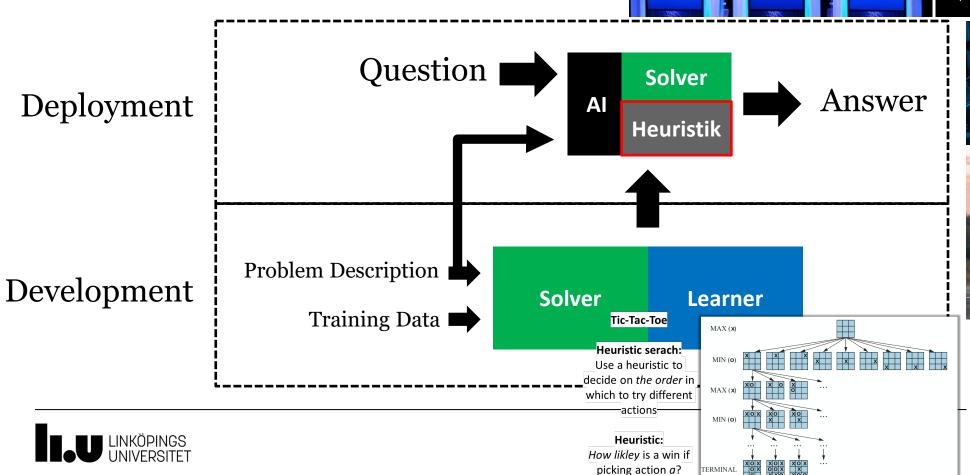
Applied Al | HybrSystematic AI (illustration)



Applied AI | Hybrid AI (offline learning)

- Hybrid Al
 - Combining systematic and approximate AI (Knowledge-based and artifacts from Learning-based)

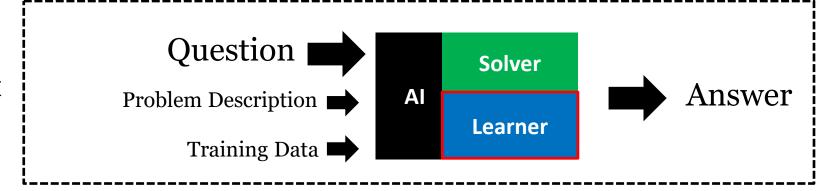




Applied AI | Hybrid AI (online learning)

- Hybrid AI
 - Combining systematic and approximate AI (Knowledge-based and Learning-based)

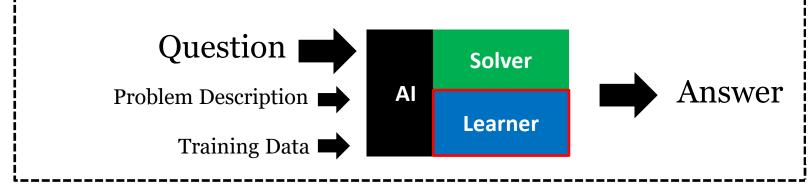
Deployment



Applied AI | Hybrid AI (online learning)

- Hybrid AI
 - Combining systematic and approximate AI (Knowledge-based and Learning-based)

Deployment



Solver
Model
Predictive
Control

Learner
Bayesian
State
Estimation

ML | Categorization of Approaches

Probabilistic ML (Bayesian Learning, Grounded ML, Casual ML)

- Examples: Graphical models, Gaussian processes, BNNs*, ...
- **SOTA**: Automatic decision making, safety-critical systems, building understanding (automated research)

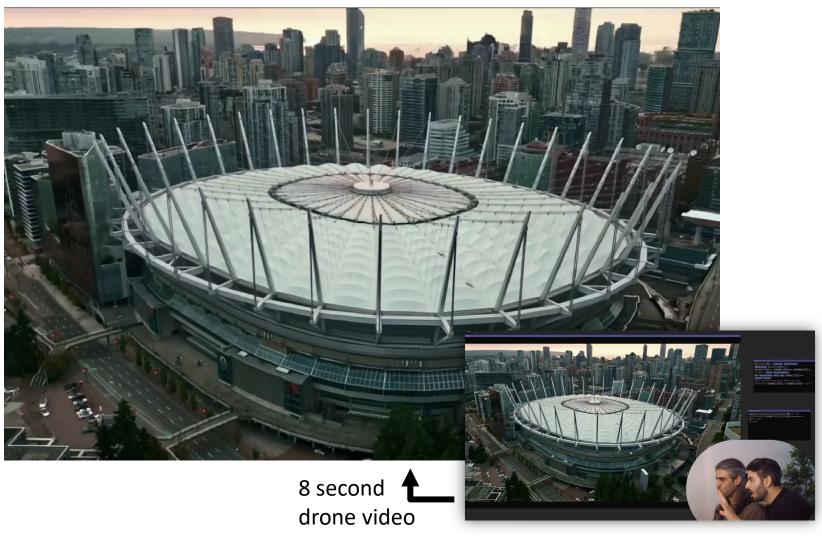
Deep Neural Networks

- Examples: FNN, CNN, RNN, GNN, ResNET, Transformer, ...
- **SOTA:** Image, Video, Sound, Text, ... (unstructured, high-dimensional)

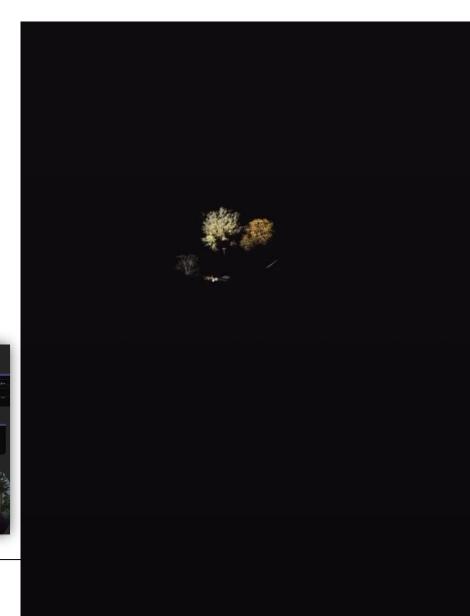
Gradient Boosting Decision Trees

- Examples: XGBOOST, CatBoost, Light GBM
- **SOTA:** Tabular data (structured data)

Example: Probabilistic ML (Gaussian Splatting)



Gaussian Splatting – Real-time rendering



ML | Categorization of Approaches

Probabilistic ML (Bayesian Learning, Grounded ML, Casual ML)

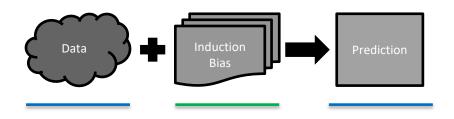
- Gold standard
 - The full learning problem with uncertainty can be stated (then often approximated for efficiency...).
 - Integrate domain knowledge (i.e. from physics) directly into the ML models
 - Online learning, Sample-efficient learning, *understanding*, Guarantees, ...

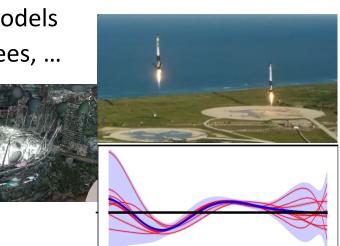
Deep Neural Networks

- Examples: FNN, CNN, RNN, GNN, ResNET, Transformer, ...
- **SOTA:** Image, Video, Sound, Text, ... (unstructured, high-dimensional)

Gradient Boosting Decision Trees

- Examples: XGBOOST, CatBoost, Light GBM
- SOTA: Tabular data (structured data)





What is needed for effective ML in the wild

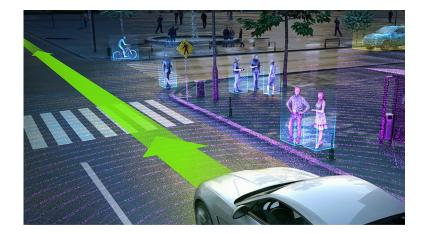
- We need Probabilistic ML But it does not scale
- DL (etc.) scale But it has none* of the necessary properties
- ➤ We need to effectively combine both

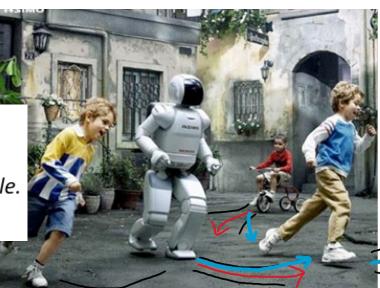
Deep Neural Networks

- Examples: FNN, CNN, RNN, GNN, ResNET, Transformer, ...
- SOTA: Image, Video, Sound, Text, ... (unstructured, high-dimensional)

Gold standard

- Trust, transparency, reliability, explicit uncertainty/probabilities, guarantees...
- Induction bias is explicit, prediction uncertainty well founded, model is explainable.
- Explicit separation (and estimation) of Epistemic and Aleatoric uncertainty.





Bridging academia and industry

Industry (and society)

- Makes AI concrete through usability and societal impact
- Possesses resources and expertise in production and deployment
- Has access to socio-strategic, industry-tactical, and immediate perspectives and needs

Academia (basic research in AI)

- Offers a vast toolkit of **general-purpose methods** adaptable to many specific applications
- Provides knowledge on enabling technologies for the next (next-next) gen. of tech (2-10 years ahead)
- Contributes **strategic** and long-term **perspectives** on **capabilities** and impact

Current dynamics

- ➤ Al research now traverses Technology Readiness Levels (TRLs) at unprecedented speed: what once took 5-10 years can now happen within 3-12 months.
- > With sufficient resources, we can build a demo of almost anything today.
- > Building something reliable, however, remains far more challenging. It requires safety and adaptivity by design.

Al projects

Al projects vs other kinds of projects?

- Competence?
- Uncertainty?
- Resources?
- Input?
- Verification and Validation?
- Users?
- Legal?
- Ethics?

Mattias Tiger

Al och Integrerade Datorsystem (AIICS), Institutionen för Datavetenskap

www.ida.liu.se/~matti23/mattisite/research/

www.liu.se/ai-academy

www.liu.se/medarbetare/matti23

